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Introduction

Setup & Background

g = simple Lie algebra / C

A = fin. gen. comm. assoc. unital C-alg. (e.g. C[t ])

g[A] = g⊗ A, a generalized current algebra; Lie algebra via

[x ⊗ f , y ⊗ g] = [x , y ]⊗ f g, x , y ∈ g, f ,g ∈ A

When A = C[t ], denote g[A] =: g[t ], the current algebra.

Gell-Mann, 1960s, electromagnetic currents of strongly interacting
particles
When A = C[t ] or C[t , t−1], rep’n. theory of g[A] well studied, as
important subalgebras of affine Lie algebra ĝ

Lie algebra cohomology of g[A] not well understood
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Introduction

Two Problems

Q1: Assume M is a f.d. g[A]-module. Is Hn(g[A],M) f.d.?

Q2: Describe Extng[A](L1,L2) for simple f.d. g[A]-modules L1,L2.

Note: the simple f.d. g[A]-modules have been classified by
Chari-Fourier-Khandai (2010): they are tensor products of “evaluation
modules” obtained from simple f.d. g-modules.
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Preliminaries

Basic Notation

g ⊃ h = Cartan subalgebra

W = Weyl group, w0 = longest element, θ = highest root

P+ = dominant int. weights, V (λ) = simple f.d. g-module, h.w. λ ∈ P+

V (λ)∗ = V (λ∗), λ∗ := −w0λ

g ∼= g⊗ C · 1 ≤ g[A]

If A . A+ augmented, g[A+] := g⊗ A+. Write g[t ]+ := g⊗ t C[t ].
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Preliminaries

Simple Finite-Dimensional Modules

∀m ∈ MaxSpec(A), A→ A/m ∼= C induces evm : g[A]→ g “evaluation.”

g-module V  ev∗mV = g[A]-module; note ev∗mV (0) = C ∀m.

P = {π : MaxSpec(A)→ P+ | π finitely supported }

V(π) =
⊗

m∈MaxSpec(A) ev∗mV (π(m)) = a f.d. g[A]-module

V(π)∗ = V(π∗) where π∗(m) := π(m)∗ = −w0π(m)

Theorem (Chari-Fourier-Khandai, 2010)

The V(π), π ∈ P, form a complete irredundant set of finite-dimensional
irreducible g[A]-modules.
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General Results on Cohomology

Theorem (1)

A augmented, M = g[A]-module, finitely semisimple for g:

Hn(g[A],M) ∼=
⊕

i+j=n

Hi(g[A+],M)g ⊗ Hj(g,C).

For A = C[t ], recovers a result of Fialowski-Malikov (2004) giving
degree n extensions between single evaluation modules
So f.d. of Hn is reduced to that of Hi(g[A+],M)g for 0 ≤ i ≤ n
Proof uses relative Lie algebra cohomology spectral sequences

Next: specialize to A = C[t ],M = C...
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General Results on Cohomology

Garland-Lepowsky results

Wa = affine Weyl group

W 1
a = minimal length coset reps for W in Wa

Theorem (Garland-Lepowsky, 1979)
For all i ≥ 0, as g-modules:

Hi(g[t ]+,C) ∼=
⊕

w∈W1
a

`(w)=i

V (λw )∗,

where λw ∼ w · 0, and the V (λw )∗ are non-isomorphic g-modules.

For small i , one can work out the right hand side explicitly.

Since the trivial g-module V (0) only occurs for i = 0, we can plug this
into Theorem 1...
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General Results on Cohomology

Theorem (2)

H•(g[t ],C)
∼−→ H•(g,C) as rings.

The isomorphism is the restriction map induced by ev0 : g[t ]→ g.

Feigin (1980) stated that this theorem could be deduced from the
Garland-Lepowsky results.
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Ext1 and Ext2 Between Simple Modules

Ext1

Given π, π′ ∈ P, let {m1, . . . ,mn} = suppπ ∪ suppπ′.

Set πi = π(mi) ∈ P+, so that V(π) = ⊗n
i=1ev∗mi

V (πi); sim. for V(π′).

Set I = m1m2 . . .mn / A; note g⊗ I annihilates V(π),V(π′).

So g[A]/g⊗ I ∼= g⊕n (by CRT) acts on V(π),V(π′).

Using the LHS spectral sequence for g⊗ I / g[A], Künneth Formula,
Whitehead Lemmas, etc., we get:

Theorem (3)

Ext1g[A](V(π),V(π′)) is either 0, or is a direct sum of one or more terms
of the form Homg(g⊗ V (πi),V (π′i )).

Recovers results of Chari-Greenstein (2005: A = C[t ]) and Kodera
(2010: general A). Also proved by Neher-Savage (2015) in the context
of equivariant map algebras.
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Ext1 and Ext2 Between Simple Modules

Ext2

Theorem (4)

Assume πi 6= π′i for some 1 ≤ i ≤ n. Then

Ext2g[A](V(π),V(π′)) ∼= Homg[A]/g⊗I (V(π),H2(g⊗ I,C)⊗ V(π′)).

We have a similar formula for Ext2g[A](V(π),V(π)).

The main obstruction to understanding Ext2 between simples is
H2(g⊗ I,C)...
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Finite Dimensionality

Finite Dimensionality of Ext2

Make the following Standing Assumptions from now on:

A = C[t ]
I = 〈(t − a)(t − b)〉 / A for distinct a,b ∈ C

In particular, V(π) and V(π′) are tensor products of two evaluation
modules (evaluated at a,b).

Theorem (5)

Under the Standing Assumptions, H2(g⊗ I,C) is finite-dimensional,
and every g-composition factor is of the form V (λ), λ ∈ P+, λ ≤ 2θ.

Corollary

Under the Standing Assumptions, Ext2g[t](V(π),V(π′)) is finite-
dimensional.
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Finite Dimensionality

The proof of Theorem 5 involves many explicit calculations. At one
point, we invoke a result of Zusmanovich (1994) which entails
computing the first cyclic homology HC1(A′) := Λ2(A′)/T (A′) for the
algebra A′ := C⊕ I, where

T (A′) = span{fg ∧ h + gh ∧ f + hf ∧ g | f ,g,h ∈ A′}.

We proved:

Theorem (6)

Under the Standing Assumptions, dim HC1(A′) = 2.
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Structure of H2(g⊗ I,C)

g× g Structure of H2(g⊗ I,C)
By analyzing the LHS s.s. for the ideal g⊗ Is / g⊗ I (s > 1), and
passing to the associated graded algebra for the quotient, we deduce:

Proposition

Let λ, µ ∈ P+, λ 6= 0. Then, under the Standing Assumptions,

Homg×g(V (λ)�V (µ),H2(g⊗I,C)) ∼= Homg(V (λ),H2(g[t ]+,ev ∗b−aV (µ)∗))

Corollary

Let 0 6= λ ∈ P+. Then

[ H2(g⊗I,C)) : V (λ)�C ]g×g = m > 0 ⇐⇒ λ = λ∗w , w ∈W 1
a , `(w) = 2,

in which case m = 1; and similarly for C� V (λ).

Also: [ H2(g⊗ I,C)) : C� C ] = 1, and [ H2(g⊗ I,C)) : g∗ � g∗ ] > 0.
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The End

THANK YOU!
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